3−4−3 空間自己相関係数(SPAC法)

SPAC法による位相速度解析は微動を定常確率過程と見なすほか,観測データの中ではレイリー波基本モードが卓越していることを仮定する。

解析はまず推定したスペクトルからブロックごとに各観測データ間の空間自己相関関数を計算する。このブロックごとに計算された結果を平均して,空間自己相関関数とする(区間分割法)。(岡田ほか,1998)

中心点を共有する,同じ地震計間距離(以後,相関距離と呼ぶ)のデータに対して空間自己相関関数の方位平均を行うことにより,対象とするアレー内の空間自己相関係数を求めることができる。実際には正三角形を構成する地震計ペアの組合わせ(3組)における空間自己相関関数の平均をとることによって求める。今回用いた地震計アレーで構成される相関距離と,その地震計の組み合わせを以下に記す。また,組み合わせ概念図を図3−6に示す。組み合わせで表示している地震計番号は図3−2で示されているものである。

表3−3

一つの組み合わせ番号ごとに空間自己相関係数が計算される。今回用いた地震計アレーでは,複数の空間自己相関係数が求められている地震計間距離がある。例えば大アレー866mでは組み合わせ番号2,3,4,5の4ケースで求められる。そのような場合は,それらの平均を用いて,その地震計間距離における空間自己相関係数とした。この平均操作は,区間分割法の場合のように数理統計的に安定した空間自己相関係数を求めるという意味の他に,空間的にアレーの大きさの視点で見た範囲での平均構造を求めるという意味も持つと考えられる。すなわち,各ケース間で直下の地下構造が異なる,いわゆる不均質構造がある場合,それらを一つの均質な構造と見なした解を得ることになる。“不均質構造の平均化”とでもいうべき操作にあたる。