Slipping of the earth's surface at the Nojima fault (Nozima fault) on Awajishima Island resulted from this earthquake (Fig.7-16). The southeastern side of Nojima fault rose a maximum of 1.4 m to the northwest, and slipped a maximum of 2.1 m to the southwest. Observation of crustal deformations during this earthquake show that the area surrounding the focal region was compressed in an east-west direction and that the southeastern side of the Nojima fault rose to the northwest (Fig.7-17). It was also determined that the northwest side of the focal region rose to the southeast in the Hanshin area, in contrast to the uplift on Awajishima Island. These deformation suggest that the area was subjected to compression in an east-west direction. This is in rough conformity with the topography of the area and previously known crustal movements. No large-scale movement occurred in the Hanshin area, however. It is difficult to believe that the Rokko Mountain (Rokko Santi) area was formed by repeated earthquakes of the same type as the Southern Hyogo Prefecture Earthquake, so we must conclude a different type of earthquake was responsible for the formation of this area. For example, it has been suggested that the 1596 Keicho Fushimi Earthquake (M 7 1/2) might be this type of event.
Many felt and unfelt aftershocks occurred after the Southern Hyogo Prefecture Earthquake. This aftershock activity gradually diminished, with the largest aftershock (M 5.4) occurring about two hours after the main shock (Fig.7-18, Fig.7-19).
A Special Measures Law on Earthquake Disaster Prevention was promulgated after the occurrence of this earthquake, and the Headquarters for Earthquake Research Promotion was established.